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Egyszerű és nagyszerű eszköz  … 

Már csak ennyi? Mi a kihívás?  



Csak ennyi! A kihívás máshol van. De ott temérdek …  



CRISP-DM (Cross Industry Strandard Process for Data Mining) 
was conceived in late 1996 by three “veterans” of the young and 
immature data mining market. DaimlerChrysler
(then Daimler-Benz) was already ahead of most industrial and 
commercial organizations in applying data mining in its business
operations. SPSS (then ISL) had been providing services based 
on data mining since 1990 and had launched the first 
commercial data mining workbench—Clementine®—in 1994

A kihívás visszavezethető a modellezési feladatra



3

Amely feladat összetettsége egyre nyilvánvalóbb … (lásd  CRISP-ML)



Annyira, hogy szabványosítani és automatizálni érdemes … (MLOps)
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Az AI/ML alkalmazásai tipizálhatók …  így az algoritmusok környezete is.
A kihívás az alkalmazás körülményeire is visszavezethető
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MI megoldásokat fejlesztő szakmérnök: www.ai-academy.hu
Ipar 4.0 megoldásokat fejlesztő szakmérnök:  www.ipar4.org

http://www.ai-academy.hu/
https://www.ipar4.org/


The qualification of each material is carried out by 
determining several essential parameters. 
Unfortunately, traditional measurements are slow, 
expensive and contain dangerous substances.

e.g. Infrared spectroscopy is fast, one of the 
cheapest and chemical-free
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Esettanulmány … mintarendszer a MOL-ból
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Data collection

Collection of laboratory data
Use of island-like devices and edge computing 
devices

Collection through 4G network, storage in a private 
company cloud

Collecting huge amount of data quickly
Continuous data connection with the laboratory 
information system (LIMS)

Development of reports according to the needs of 
operators, engineers and managers (decision 
support)
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Data pre-processing

Data cleaning
Missing data 

Noisy data

Data integration
Laboratory raw data

LIMS data

(MES data)

Data transformation
Normalisation

Smoothing

Derivation

LAB LIMS MES

Input data
for ML



Exploratory Data Analysis 
Preparation

Base statistic analysis 

Plot generation

Outlier detection
Dimension reduction with 
Principal Component Analysis  

Feature engineering

Spectrum range selection

New features generation
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EDA & Outlier detection & Feature engineering
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ML development & validation

Supervised learning:
PLSR (Partial Least Squares Regression)

RFR (Random Forest Regression)

XGBR (Extreme Gradient Boosting Regression)

Hyper-parameter tuning

Testing with optimized parameters

Testing the model on unknown samples



Continuous ranking of ML models 

Displacement of the best model
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ML algorithms development

Target 
variables

RMSE R2 RPD

10-cv perf. 10-cv perf. 10-cv perf.

PLSR 0.010 0.035 0.999 0.975 57.73 6.36

RFR 0.089 0.084 0.972 0.929 5.98 3.77

XGBR 0.005 0.112 0.999 0.747 31.62 1.98

10-cv: 10-fold cross-validation
perf.: results of the performance dataset (unknown samples)

ML

data
Lab PCCloud data

Prediction
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ML performance metrics

Several indicators must be continuously 
monitored to ensure the good performance 
of the models

Potential KPIs:
RMSE (root mean squared error)

RPIQ (ratio of performance to interquartile)

R2 (coefficient of determination)

RPD (residual prediction deviation)

NSE (Nash-Sutcliffe efficiency)
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Performance monitoring of ML

The performance of ML models may 
deteriorate 

The cause of the deterioration can 
change over time

Time constant of the performance 
change

Fast vs. slow change of the performance 
refers to different root causes



Performance monitoring of ML
Performance indicators take a different value 
from the usual values

Only one indicator changes

All indicators change continuously over time, 
the values gradually deteriorate, and it is no 
longer suitable after a particular time.

When do we classify a model as no longer 
suitable?

What do we do with it?

What work order do we issue for it?

If the model no longer works, what options are 
there to manage the model

Development of Statistical Process Control 
(SPC) processes - business process 
development

Active learning

Augmented data generation



Visualization of ML models

We need to visualize metrics and model 
performance over time.

The performance of ML models can decrease over 
time, which can be caused by several things.

Changes in performance must be detected in time, 
and production must be intervened if necessary.

It is essential to consider several indicators and 
perform a sensitivity test.

The aim is to reveal which production change has 
what effect and to what extent each indicator.



Industrial architecture for ML application
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Lessons learned

The development of ML algorithms and their 

operation is a matter of research at MOL

Development project, development of 
appropriate methodology 

Indicators should be monitored

Maintenance of models should be continuous 

It must be managed at the system level

It requires expertise 

Compliance must be qualified 

Facilitating decision support

Let's face it bravely 



Thank you very much for your kind 
attention!


